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Abstract--An efficient and robust iterative solver was proposed to solve the five-diagonal matrix equations 
that arise from implicit discretization of two-dimensional thermal and fluid flow problems. By regarding 
the well-known ADI solver and the direct solver as the lowest and the highest levels of matrix decomposition, 
a systematic investigation was carried out to identify which level of matrix decomposition is then most 
suitable for the five-point formulation currently in use. Also, the existing block-correction procedure is 
implemented by deliberately evaluating the residual. In this way, both the high- and low-frequency errors 
are efficiently reduced so that the new iterative solver provides savings of about an order of magnitude in 
the computational cost. As the grid size increases, the new solver presented here turns out to be more 

powerful and more robust than other iterative solvers previously available. 

INTRODUCTION 

Numerical investigation in the field of thermal and 
fluid engineering frequently requires the solution of 
partial differential equations that reflect the con- 
servation principles of physical quantities. Appli- 
cation of implicit discretization techniques then poses 
the task of solving a large set of algebraic equations 
that replace the original partial differential equations. 
There is no need to say that it is very important to 
adopt an efficient solver. 

Solvers for simultaneous linear algebraic equations 
are normally classified into two groups, e.g. direct 
solvers and iterative solvers [1]. There exist in the 
literature a number of direct solvers, including the 
earlier methods in algebra such as the Cramer's rule 
and the Gaussian elimination. Two fast, direct 
methods for the solution of the Poisson and Laplace 
equations are the even-odd reduction method [2] and 
the fast Fourier transform method [3]. These two 
direct methods have been generalized later in refs. 
[4, 5]. A highly competitive direct block Gaussian 
elimination method is also available in ref. [6] for 
discrete Poisson problems. Nevertheless, the use of 
direct solvers is effÉcient only when the coefficient 
matrix is prescribed once and for all, as encountered 
in linear problems. For nonlinear problems, it is 
unwise to spend an excessive amount of effort on 
solving equations that are based only on tentative 
coefficients [7]. Therefore, under these circumstances, 
the iterative solvers are more widely used, in which 
the tentative coefficients are updated after sufficient 
iterations of the equation solver. Up to now, many 

tAuthor to whom correspondence should be addressed. 

iterative solvers have been developed, such as the 
Gauss-Seidel point-iterative method, the ADI (Alter- 
nating Direction Implicit), the SIP (Strongly Implicit 
Procedure) [8], the MS! (Modified Strongly Implicit) 
[9], the CSIP (Coupled Strongly Implicit Procedure) 
[10], the RL (right-to-left) and LR (left-to-right) 
solvers [11], and the SIS (Strongly Implicit Solver) 
[12]. Other iterative solvers are also available for 
certain limited cases, e.g. the ICGM (Incomplete 
Cholesky-conjugate Gradient Method) [13] is useful 
when the coefficient matrix is symmetric and positive 
definite. A brief review of the performance character- 
istics of these iterative solvers is given below. 

The Gauss-Seidel point-iterative solver poses a low 
convergence rate because the boundary-condition 
information is transmitted at a rate of one grid interval 
per iteration. To overcome such a slow convergence, 
ADI employs the line-by-line TDMA (Tri-Diagonal 
Matrix Algorithm) in alternating directions. For two- 
dimensional situations, a single iteration of ADI 
involves four sweeping directions (i.e. west-to-east, 
east-to-west, south-to-north, and north-to-south). 
Depending on problems, one may choose a smaller 
number of sweeping directions to improve the con- 
vergence rate, because the rate of propagation of 
information is dependent on the sweeping direction. 
Generally, the otherwise effective ADI solver shows 
poor performance when the sweeping direction is 
opposite to the flow. 

The SIP [8] precludes the need for sweeping, but it 
is sensitive to a parameter for the matrix operation, 
called the cancellation parameter ~. In the SIP, the 
five-diagonal coefficient matrix is approximately 
decomposed into a product of an upper triangular 
matrix and a lower one through the partial can- 
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NOMENCLATURE 

A influence coefficient 
[A] coefficient matrix 
CPU computational cost unit, equal to the 

actual computing time for a single 
iteration of the SIS solver 

entry a set of nonzero elements in a matrix, 
equation (6) 

[G] auxiliary coefficient matrix 
{H} modified source vector, equation 

(16) 
i, j index for the node of interest 
I, J number of nodes in x, y coordinates 
[L] lower triangular matrix 
N number of total grid points, I x J 
{q} source vector, equation (1) 
Pr Prandtl number 
{R} residual vector, equation (5) 
{R} residual vector for {q~} 
Rma x maximum residual, Maxi,jlRid[ 
Ra Rayleigh number 
u, v Cartesian velocities 
[U] upper triangular matrix. 

Greek symbols 
cancellation parameter 

{~} increment vector, equation (19) 
Omax maximum change, Max~,jlb~,jl 
0 temperature 
q~ unknown field variable 
{q~*} guessed field vector 
{~} overrelaxed field vector, equation 

(18) 
streamfunction 

o~ relaxation factor or vorticity. 

Superscripts 
e east 
n north 
p main grid point 
s south 
Tr transpose 
w west 
* guessed values 
- additive-correction 

overrelaxation. 

cellation procedure. To eliminate the effect of the par- 
tial cancellation, iteration is necessary and it is crucial 
to evaluate the residual for the next iteration. The 
RL and LR solvers [11], as variants of the SIP, can 
accommodate the nine-diagonal coefficient matrix, 
but they are also sensitive to the cancellation par- 
ameter u. Although the MSI [9] appears insensitive to 
the ~ value, contradicting results are reported on its 
performances [11]. The CSIP [10] is particularly appli- 
cable to the coupled set of algebraic equations and 
needs further improvement in efficiency. 

The SIS [12] is based on a combination of SIP and 
ADI, taking the advantages of both while avoiding 
the disadvantages of each. In the SIS, no sweeping is 
necessary while the convergence rate is less sensitive 
to the iteration parameter. Compared to the SIP fam- 
ily of solvers, it does not require the residual to be 
evaluated and thus saves considerable CPU. The SIS 
showed good performances over other iterative 
solvers. Unfortunately, the performance test of the 
SIS was made only for relatively coarse grid systems 
of 21 x 21 resolution. As a result, it is uncertain that 
the SIS also works well with higher grid resolution. 

In the present work, a new solver is proposed for 
the solution of simultaneous linear algebraic equa- 
tions that arise from implicit discretization of two- 
dimensional field equations. The new solver proposed 
here is based on an elegant combination of the block- 
correction procedure of Settari and Aziz [14] and the 
matrix decomposition technique---for convenience it 
will be called the BASIS solver (Block-correction 
Aided Strongly Implicit Solver) hereinafter. Although 
not inherently limited, the five-diagonal coefficient 

matrix is considered here, since it is more prevalent 
among the numerical formulations currently in use. 
Depending on the choice of nonzero diagonals of the 
two factored matrices, three levels of matrix decompo- 
sition are considered and the convergence rate of each 
is examined. In the present BASIS, the matrix 
decomposition alleviates the short-wavelength 
residual components, whereas the block-correction 
procedure attenuates the long-wavelength residual 
components. Overall, the new BASIS solver shows 
performances an order of magnitude faster than other 
iterative solvers. 

TASK TO BE UNDERTAKEN 

Consider a two-dimensional domain composed of 
a set of I x J inner grid points (excluding the grid 
points on the boundaries of the domain) so that each 
point in the domain is designated by an index array 
(i, j )  where i = 1,2 . . . . .  I and j = 1,2 . . . . .  J. Implicit 
discretization of the differential equations frequently 
yields the following well-structured linear algebraic 
equations : 

A w s p i.j ( ~ i - l , j q ' - A i , j ~ i , j  i - } -Ai , j  ~ i , j  

.-[- A~. j ~)i,j+ l -}- Aie, j (~i+ l , j  -'~ qi.: 

where 

(1) 

A ~ j = A T j = 0  for j = l , 2  . . . . .  J 

A n s i,j=Ai,~ = 0  for i =  1 ,2 , . . . , I .  (2) 

Each index is repeated so as to generate a total of 
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Fig. 1. The designations used for the node molecules and 
their matrix representation. 

N = I x J linear algebraic equations. In compliance 
with the matrix operation, equation (1) is con- 
veniently expressed in a form of matrix equation as 

[A]{~} = {q} (3) 

where [A] is an N x N matrix with five diagonal 
coefficients; and both {~} and {q} are N x I column 
vectors, e.g. {4 ~} = ((~)1,1, (~1,2 . . . . .  ~b2,1 . . . . .  ~ / , j ) T r ,  

Given [A] and {q}, the mission is to find a solution 
vector {4~} that makes the residual defined as 

Ri j  = q i j -  A~j 49ij - ATj c~i+ 1 j -  A~j q~i l.j 

--A2jc~,, j+I--A[j~p,j_,  (4) 

o r  

{R} = {q} - [ 4  {,~} (5) 

to vanish sufficiently over the entire domain. 
For  later reference, Fig. 1 shows the designations 

used for the node molecules and their corresponding 
diagonal locations when represented as matrix com- 
ponents. In addition, an entry of a matrix is defined 
as a set of nonzero diagonals of a given matrix, e.g. 
the five-diagonal coefficient matrix [A] will be simply 
denoted by 

entry [A] = (A w, A ~, A p , A n , A e ) (6) 

where A in the parentheses stands for the matrix of 
interest and the superscripts, such as w, refer to the 
locations of nonzero diagonals in the matrix [A]. 

PREAMBLE : BLOCK-CORRECTION 

Since the block-correction procedure [14] is one of 
the essential parts of the BASIS, its features are briefly 
described below. Subsequently, we explain how it can 
be implemented into the BASIS. The block-correction 
procedure was originally developed in an attempt to 
improve an intermediate solution {~} by adding uni- 
form corrections, e.g. ~ along lines of constant i, such 
that 

~b,,j = q~,j + q~i. (7) 

Substituting this into equation (1) and summing over 
j,  a tridiagonal matrix equation is obtained : 

xP ~)i "JU Xe~ i+  1 + xW ~ i  - 1 = Xf ( 8 )  

where 
p n s x~ = Z)(Ai,j + Aij + Aij) 

x~ = ZjA~,j 

x~ = ZjA~j 

x~ = Zj/~,.j. (9) 

In the above, Ri.j is the residual defined by equation 
(4). Note that the boundary corrections, q~0 and q31+ 1, 
are unnecessary since x~ = 0 and x~' = 0. Hence, equa- 
tion (8) can be solved efficiently by the TDMA. Then, 
the new field {~} available through equation (7) 
exactly satisfies the overall conservation over the con- 
trol-volume blocks of each constant-/line. In a similar 
manner, uniform corrections along constant-j lines 
can be found as well; therefore, there exist two uni- 
form corrections, say q3~ and ~j. 

The foregoing additive-correction is particularly 
useful in reducing the long-wavelength components 
of the residual that span, with same sign, many grid 
points. In the presence of long-wavelength residual 
components the convergence rate is dramatically 
reduced [1 5] and its influence is more pronounced for 
grid systems of high resolution. 

Unfortunately, this useful additive-correction pro- 
cedure has not been tested in the SIS or in the SIP 
family of solvers. For  instance, a major advantage of 
SIS lies in that it needs no evaluation of the residual, 
which thus is incompatible with the block-correction 
procedure making use of the evaluated residual. 
Another efficient way of eliminating the long-wave- 
length residual components is using the multi-grid 
method [15, 16]. This technique utilizes the fact that 
a long wavelength relative to a fine mesh is short to a 
coarser mesh. Apparently, the multi-grid method 
needs further standardization for easier use. Due to a 
building-block character of a matrix solver, the pre- 
sent BASIS solver can also be incorporated into the 
multi-grid method to enhance the convergence rate 
further. 

FORMULATION OF THE BASIS SOLVER 

In this section, the new BASIS solver is presented 
with the aid of the block-correction procedure [14] 
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Table 1. The three levels of the L - U  decomposition considered in this study : the entries of each matrix in equation (10) are 
listed below, where entry [A] = (A ~, A ~, AL A", A ~) 

Level of 
decomposition Entry [L] Entry [U] Entry [G] 

Level 1 (L w, L ~, L p) (U p = I , U " , U  ~) (G w", G ~) 
Level 2 (L w, L ~n, U, L p) (U p = 1, U", U ~*, U*) (G wnn, G ~°) 
Level 3 (L w , L wn , L wan , L ~, L s, L p) ( U  p = 1, U ~ , U n~ , U ~s~, U s~ , U ~) (G . . . .  , G . . . . .  , GS~0, G ~ )  

described above and the matrix decomposit ion tech- 
nique. As a first step, let us examine how an auxiliary 
N × N  matrix [G] can be constructed such that 
[A] + [G] allows for the well-known L - U  decompo- 
sition, i.e. 

[A] + [G] = [L][U] (10) 

where [L] designates a lower triangular matrix and 
[U] an upper one. In this respect, A D I  may be inter- L e v e l - 2  

preted to have L w 
i,J 

entry[G] = ( - A W , - A  ~) (11) w~ 
L~d 

and [A] + [G] thereby becomes a tridiagonal matrix. 
Such a situation may be regarded as Level-0 decompo- LiS'J 
sition since A D I  provides the lowest level of  decompo- LPj  

sition possible. Another  limiting case of  [G] = [0] cor- 
responds to direct matrix decomposition, which may un',J 
be symbolically designated by Level-re. Meanwhile, U ~  
the decomposit ion levels associated with the available 
iterative solvers can be thought to lie in between the U~j 
above two limiting cases. For  an iterative solver to be ~n~ 
efficient, it might be good for the sparse nature of  each G~° 
matrix to be retained as far as possible. However,  Gj~ 
there must be a trade-off between the total number 
of  iterations required and the C P U  spent per each 
iteration (e.g. direct solvers need only one iteration L e v e l - 3  

but at a large cost of  C P U  and storage). Unfor-  
tunately, this issue has not  been investigated sys- 
tematically in the previous studies. LW" = t,J 

In order to investigate which level of  decomposit ion Z wnn = 
is most suitable for five-diagonal formulation of  field ~,J 
equations, we decided to consider three different levels L~,~ = 
of  decomposition, namely, levels 1-3. The entries of  
[L], [U] and [G] matrices corresponding to each level L~,s = 

of decomposit ion are shown in Table 1. It  can be seen 
LPi, j = 

that, as the decomposit ion level increases, each matrix 
gradually loses its sparsity. This implies that the C P U  
required for a single iteration goes up at a higher U n =  
decomposit ion level. The explicit expressions for the ~.s 

entries of  ILl, [U] and [G] can be derived by term-by- 
term matching between the matrix elements of  
[A] + [G] and ILl[U]. The final results are summarized 
below. 

L e v e l - 1  d e c o m p o s i t i o n  

L W A w 
i ,j  ~ i , j  

L i S j  = AiS, j 

p _ _  s n w e 

L~j = A i j  L i  d U i d -  l - -  L i d  U i -  l , y  

U~.  ~ P ,.j = A~,//L~,s 

G ~Wj n = L~wju?_ ~,~ 

G,:~ = L ~ U ° i ,j  i , j - -  1 • (12) 

d e c o m p o s i t i o n  

= A w 
Id 

= - L~,~ U i  ~_ , , j  

A ~ L ~ U ~ = i, j  - -  i , j  i-- l , j  

AP L s rrn L w U e = ~ c a i . j - -  i , j t d i j - - 1  - i , j  i - l . j - L i . ~ l U ~ e - l , j + l  

//In Lwn U e ~/L p 
1 , j - ~ | / " /  , , j  ~ ' - i , j  - -  i , j  i-- 

I s r f e  /L  p 
- -  ~ ' i , j  t J i , j  -- 1 / i , j  

= A b / L ~ j  

= L wn U ~ i , j  i-- I , j +  1 

s se  
= L i ,  j g i , j -  i .  (13) 

d e c o m p o s i t i o n  

Z w w 
i,/ = A i d  

urn; = 

U,~7 = 

s¢  _ _  
U i ,  j - -  

U L  = 

a w n n n  = 
i .j  

a w n n n n  = 
i , j  

- Li,~ U i  ~_ ~,j 

L w U nn Lwn U n 
- -  i , j  i 1, j  - -  i ,j  i l , j +  I 

- LTj  U ~  1 j 

A ~ L w rls~ rwn U . . . . . .  
i . j - -  i , j v i - - l , j - - I - ' i , j  i - -  1 , j +  1 - - L i , j U i ,  j - 2  

A P j  - -  L ~ , j  U ~ , j _  l - -  L ~ , j  u i n . l _ 2  

w e r w n  use I w n n  u s s e  
- -  Z l , j U i  1 , j - -  ta i , j  i I , j + l  - -  L~i,j i - l , j + 2  

(A~,s-L~,sU~,~ , 

w n  e w n n  se  p 
- - L i d  U i - , o + l  - L i ,  j Ui  l o + 2 ) / L i o  

w n n  e t p 
- - L i , j  V i - l , j + 2 /  i , j  

I s 1 7  se  r ss U e ] l i p  
- - z . ~ i , j ~ J i , j _  l --a.~i ,  j i , j - 2 J l ~ i , j  

i s  ire / Z  p 
- -  ~L~i,j tJ i , j --  l / i ,j  

e p 
m i , j / t i ,  j 

Z~7 Ui~  l,j+ 1 + Zi,Wj nn U i  n- l,j+ 2 

Li,~ n Ui r-~ la+ 2 
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Li,j Uio-  2 

G~.7 ~ = L~.jU~.~_, + L~,~U~.~._2. (14) 

Now, with all the ingredients described so far, we are 
at the point of proposing the solution procedure of 
the BASIS solver. Suppose {~*} is an unconverged 
field at the previous iteration. By adding 
[G]{q~} = [G]{~*} to equation (3), we have the fol- 
lowing recursive relation : 

[A+G]{~} = {q}+[C]{~*} (15) 

o r  

[L][U] {q~} = {U} - {tl} + [G] {~*} (16) 

which can be effÉciently solved by applying the forward 
followed by backward elimination, i.e. 

{~b} = [U] -1 [L] -l  {H}. (17) 

Since the column vector {H} contains the guessed 
solution {4~*}, the correct solution should be iter- 
atively determined by updating {H} until a con- 
vergence criterion is satisfied. To further speed up 
the convergence rate, it is also good to employ the 
successive overrelaxation factor ~o, as in other iterative 
solvers : 

{,~} = {~*} +0,{6} (18) 

where 

{6} = {~--~*} (19) 

is the increment vector and the vector {~} is the solu- 
tion obtained from equation (17). Note that in the 
SIS the relaxed vector {~} is simply used to update 
{H) for the next iteration. 

Due to the sparse nature of the matrices, the solu- 
tion from equation (17) mainly reduces the short- 
wavelength residual components, while the long- 
wavelength residual components may survive up to a 
large number of iterations. As was mentioned earlier, 
such an unwelcomed situation can be avoided by 
employing the block-correction procedure, which, 
however, calls for the evaluation of the residual. 
Lee [12] points out that evaluating the residual is 
equivalent to performing a complete sweep of Gauss- 
Seidel point iteration and, therefore, is very time-con- 
suming. In the present study, the computational cost 
for evaluating the residual is cut off by deliberately 
rearranging equation (15) as 

{q} - [ 4  { ~ }  = [G l{~ -  4'*) 

o r  

{R} = [G]{6} .  (20) 

A use of equation (20) possesses two notable advan- 
tages over using equation (4). First, there is no need 
to store the coefficient matrix [A], thereby saving the 
storage considerably. Second, for Levels 1 and 2 
decomposition, only two multiplications and one 

addition are necessary for each (i, j)  location, since 
the matrix [G] has only two nonzero diagonals (see 
Table 1). Compare this with using equation (4), where 
five multiplications and five additions are required. 
But for Level-3 decomposition, there exists about 20% 
savings in CPU for evaluating the residual, and there- 
fore its use would be desirable only when the total 
number of iterations can be substantially reduced. 

When the relaxation parameter 09 differs from the 
unity, an exact expression for the residual pertaining 
to the relaxed vector {~} can be derived by combining 
equations (3), (15) and (20) : 

{R} = (1 -to){R*} +rotG]{6} (21) 

where {R*} = {q} -[A]{4~*} or {R*} -- [G]{6*}. But, 
due to the iterative nature of the solution procedure, 
being exac t  with these residuals seems to be unwise 
and hence {R} is approximated as 

{P,} ~_ ~o[G]{6}. (22) 

Then, by determining {R} as above, the relaxed vector 
{~} from equation (18) is corrected with the aid of 
two uniform additive-corrections, ~e and ~j. Accord- 
ingly, the previously guessed field vector {q~*} is 
updated such that 

q~.~w = ¢k*,+a~6,,,+ (},+4,j) (23) 

where the first correction ~oSij deals with the high- 
frequency errors and the second additive-correction 
(q3,+t~j) eliminates low-frequency errors. It is noted 
that the coefficients necessary for the additive-cor- 
rection procedure (such as x p, x~, x~', etc.) need to be 
determined only once, as is the case with the L - U  
decomposition. 

In the following, the basic steps for the BASIS 
solver are summarized. 

Factorization stage : 

(i) select decomposition level ; 
(ii) evaluate the coefficients necessary for additive 

corrections ; 
(iii) determine [G], [L] and [U] matrices. 

Iteration stage : 

(1) evaluate {H} = {q} + [G]{~b*} ; 
(2) find {4~} = [U]-~[L]-'{H} and 

{a} = o , { ~ - ~ , }  ; 
(3) find {R} = [G]{a}; 
(4) solve for }i and }Z; 
(5) find ~.,.j,6"¢* = O*j+a, j+ (} ,+  }j) ; .  , 
(6) take {4~} "ew as a newly-guessed field {q~*} and 

go back to step 1. 

The above iteration continues until a preselected con- 
vergence criterion is satisfied. Lee [12] suggested the 
convergence criterion 

(~max - -  ~< TOL (24) 
IA~blmax 

where 6max = Maxio[6J ; TOL is a prescribed tol- 
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erance; fz~q~lm,x the difference between the maximum 
and minimum values of ~i,s. However, for the prob- 
lems involving strongly anisotropic coefficients (e.g. 
A~,j >> A~,j), 0max may remain very small even when the 
corresponding solution is far from converged [17]. In 
such situations, the use of equation residual, defined 
a s  R m a  x = Maxi,j lRJ,  is more appropriate to declare 
the convergence. For  comparison with the available 
results of other iterative solvers, both the criteria of 
6max and Rma x are adopted here for the measure of the 
convergence. 

COMPARISON WITH OTHER SOLVERS 

In this section, the implication of different levels of 
decomposition is addressed and the difference between 
BASIS and other iterative solvers is outlined. 

It can be first stated that both the SIP [8] and SIS 
[12] basically involve Level-1 decomposition defined 
here, i.e. entry [G] = (G w", G~e), whereas the MSI [9] 
is based on Level-2 decomposition with entry 
[G] = (G 'vn", G'Se). In the SIP family, the partial can- 
cellation procedure is employed to nullify the influence 
of [G] and, therefore, the matrix [G] is never used 
during iteration procedure. In fact, the SIP family 
make use of the following recursive equation : 

[A + G] {~} = [A + G] {~*} + {q} - [A] {~*} 

(25) 

o r  

[A +G]{6} = {R*}. (26) 

It should be emphasized that the above iteration strat- 
egy of the SIP family completely disregards the other- 
wise attractive sparsity of the [G] matrix. By contrast, 
in the SIS and BASIS, the sparse [G] matrix is fully 
utilized with the successive overrelaxation factor. 
Although BASIS stems from SIS, BASIS is dis- 
tinguished from SIS due to its necessity of evaluating 
the residual and its flexibility in the choice of 
decomposition levels. Also, BASIS contains all the 
beneficial features of SIS, but excludes disadvantages 
of SIS. For  instance, the L U  decomposition needs to 
be performed only once, even though the relaxation 
parameter may change from iteration to iteration. In 
addition, the storage can be saved by replacing the 
elements of [A] by the corresponding ones in [L] and 
[U]. As can be seen later, SIS shows poor performance 
for high grid resolution, but BASIS becomes more 
powerful in such cases. 

In Level-1 decomposition, the values at the north- 
west and the southeast points (i.e. q~W, and ~b s°) are 
either partially cancelled (SIP) or guessed (SIS and 
Level-1 BASIS). For  strongly convective problems, 
these two points would fairly affect the main ~b p value 
and hence the effect of poorly guessed values should 
be eliminated via many iterations. 

But for the case of Level-2 decomposition (M SI and 
Level-2 BASIS), the guess points are further removed 

from the (i,j) location so that both the q~wnn and ~b sse 
values are of major interest. Therefore, Level-2 
decomposition is considered to be more strongly 
implicit than Level-1 decomposition, thereby requir- 
ing fewer iterations. Level-2 decomposition, however, 
accompanies an increased CPU per each iteration, 
since the entries of [L] and [U] have one more element 
than Level-1 decomposition. 

To the authors' knowledge, no iterative solvers 
based on Level-3 decomposition have appeared up to 
date. In the present Level-3 BASIS, the guess points 
are located farther away from the main node--i.e.  
~b . . . .  , ~b . . . . .  , ~ssse, and ~b ..... , Unfortunately, the [G] 
matrix has twice as many nonzero elements and the 
CPU for evaluating the residual is doubled. Despite an 
increase in CPU per iteration, Level-3 decomposition 
poses a more strongly implicit formulation than Lev- 
els 1 and 2 decomposition. It can be anticipated that 
there should exist a trade-offbetween the total number 
of iterations and the CPU per iteration. The per- 
formance of each level of BASIS is examined and 
compared with those of other iterative solvers in the 
next section. 

TEST OF THE BASIS SOLVER 

As was emphasized earlier, the selection of the iter- 
ative solution procedure is based on the strategy of 
extracting sufficient information from the algebraic 
equations with tentative coefficients. Therefore, the 
convergence behavior, especially at an early stage of 
iterations, say within the first 10 iterations, needs to 
be examined between different solvers. This kind of 
performance test is presented in example 2 where the 
vorticity equation is selected as the target equation. 

Example 1. Heat conduction problem 
Consider a two-dimensional heat conduction prob- 

lem on a rectangular domain. The top and bottom 
walls are insulated, while the left and right walls are 
maintained isothermal at 0 = 1 and 0 = - 1, respec- 
tively. The same problem has been considered to test 
the RL and LR solvers [11] and the SIS solver [12], 
taking account of the effect of the inclined side walls. 
Since the present study is mainly concerned with the 
five-point formulation, only the case with the vertical 
side walls is considered to test the performance of 
BASIS against other iterative solvers. Specifically, the 
width-to-height ratio is fixed to be 1.25. As in refs. [11, 
12], the governing equation (~20/OX2-~-oZO/Oy2 = O) is 
discretized with the central difference scheme on sev- 
eral uniform grid systems. The grid resolutions were 
varied from 20 x 20, 45 x 45, 100 × 100 to 200 x 200. 
In comparing the performances between different sol- 
vers, the number of iterations itself is not important 
because the CPU per iteration differs from one 
another [12]. Therefore, the actual CPU is selected as 
a measure of the performance. For  convenience, one 
CPU is defined as the computational cost required by 
a single iteration of SIS. Figure 2 shows the variation 
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Fig. 2. The CPU required by ADI, SIS and BASIS solvers with various grid sizes. The convergence criterion 
used is 6 .... ~< 5 x 10 -5. The numbers in each plot denote the corresponding level of decomposition in 

BASIS. 

of CPU with respect to the relaxation parameter for 
all the grid resolutions examined. Convergence was 
assumed when the condition ~max ~ 5 X 10 -5 was  sat- 
isfied. Since for the present problem the SIS solver 
was known to be superior to other iterative solvers 
[12], comparison is made here only between BASIS, 
SIS and ADI. Lee [12] has claimed that SIS shows 
better performance than ADI. The results shown in 
Fig. 2 substantiate his opinion, but only for coarse 
grid resolution. It is evident that at higher grid res- 
olution the performance of SIS deteriorates and is 
worse than that of ADI for the case of 200 x 200 grid 
system. By contrast, it can be seen that all the three 
levels of BASIS converge much faster than SIS or 
ADI. However, BASIS has a narrower range of effec- 
tive ~o than SIS and ADI. This is due to the fact that 
for large m the intermediate field variables are exposed 
to severe additiw.'-corrections, thereby resulting in a 
shrinking range of effective ~o. The minimum CPU of 
BASIS occurs at 'values of c0 less than 1.3, while ADI 
possesses a wide range of effective ~o. Nevertheless, 
even when compared with the optimized CPUs of SIS 
and ADI, an order of magnitude saving in CPU is 
experienced by BASIS near co = 1. Note that Level-1 
BASIS shows best performance over Levels 2 and 3. 
In this example, the values of O T M  and 0 T M  are close to 
each other during iteration. For this reason, Level-2 
and Level-3 decompositions, though more implicit 
than Level-1 decomposition, are not at their full 
power. The perfi~rmance of each level of BASIS is 
investigated in the next example in the presence of 
a large variation in the field variable due to strong 
convection. 

Example 2. Natural convection problem 
In testing SIS, Lee [12] considered steady-state 

natural convection in a square cavity as one of the 
example problems. In the present work, the same 

problem is also adopted to test the performance of 
BASIS. Consider the governing equations in the 
streamfunction-vorticity formulation : 

821]J -~ 821// ~--- --(/) (27) 
8x z 8y 2 

8o9 &o /82o9 a2co\ 80 u~+V~y=er~x~ +Ty~)-e,"RaUx (28) 

aO 80 820 820 
= (29) U~x+V~y ~ + S y :  

where 

0O o0 
U = ~ y ,  v = - ~ x .  (30) 

The boundary conditions are the same as those studied 
in Lee [12] : 

~k(0,y) = ~k(1,y) = 0(x, 0) = ~b(x, 1) = 0 

0(0,y)--I  = 0(1,y) = 0 

~(x, 0) 80 = ~yy(X, 1) = 0. (31) 

The governing equations are discretized using the 
power law scheme [7] and the resulting set of algebraic 
equations are solved on uniform grids for two different 
Ra numbers and Pr -- 0.7. Once the correct solutions 
for ~O, co and 0 are obtained, the vorticity field is set 
to zero and solved again using the correct ~ and 0 
fields. This means that only the vorticity equation (28) 
is adopted for the CPU test. The same approach has 
been employed in Lee [12], mainly because com- 
putational efforts for solving each governing equation 
are not necessarily the same. 

For a convergence criterion of 6max ~< 5 X 10 -5 and 
Ra = 10 3, Fig. 3 exposes the CPU required by various 
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Fig. 3. The CPU required by ADI, SIS and BASIS solvers for example 2 with •max ~ 5 X 10 5 and Ra = 10 3. 

solvers with respect to the relaxation parameter 09. 
Three grid systems of coarse, moderate and high 
resolutions (i.e. 20 x 20, 40 × 40 and 80 x 80) are con- 
sidered. 

Unlike the case of heat conduction, each level of 
BASIS shows different performance characteristics, 
depending on the grid resolution. For coarse to mod- 
erate resolution, Level-2 BASIS appears to be the 
most efficient solver. However, Level-3 BASIS turns 
out to be best at high resolution. In the presence 
of convection, the values at the guess points would 
significantly affect the convergence rate. When the 
guess points are located farther away, the convergence 
would be accelerated. Remember that Level-3 BASIS, 
however, requires twice as much CPU to evaluate the 
residual. As a result, the overall performance of Level- 
3 BASIS is only about 15% better than that of Level- 
2 BASIS, even with 80 x 80 grid resolution. It is noted 
that ADI works very well, especially at large values 
of 09. For the 80 x 80 case, ADI seems to be com- 
parable to BASIS when both solvers are optimized. 
However, in using ADI, the relaxation parameter is 
normally set small enough to avoid divergence. For 
example, for problems involving strong convection, 
smaller values of 09 are required in ADI [17]. It is 
interesting to note that the effective range of co for 
BASIS becomes wider as the grid size increases. This 
is the most favorable feature of BASIS, namely that 
BASIS is more robust at higher grid resolution. 

Figure 4 displays the performance test for the strong 
convection case with Ra = 1 0  6. The convergence con- 
dition is the same as in Fig. 3. A feature worthy of 
note is that the range of effective ~o does not change 
much for the BASIS solver, compared with the case 
of Ra = 1 0  3. This means that BASIS is less sensitive 
to the effect of strong convection and remains robust. 
On the contrary, the optimum value of co in ADI is 
dramatically reduced to 09 ~- 1.3 from 09 ~ 1.8, as the 
Rayleigh number changes from Ra = 1 0  3 to Ra = 1 0  6. 

Therefore, in using ADI care should be exercised in 

selecting the 09 value, while BASIS remains robust 
regardless of strengths of convection. Although SIS 
has a similar merit, its convergence rate is far from 
satisfactory, as is evident in Figs. 3 and 4. 

Interestingly, decomposition beyond Level 2, in 
general, does not improve the convergence rate much. 
For coarse to moderate grids the reduction in the total 
number of iterations gained by Level-3 BASIS was 
too small to compensate for the increased CPU per 
iteration. Also for a high-resolution grid, the remote- 
ness of the guess points (q~ . . . .  , ~ . . . .  , ~b .... and q~,Sse) 
from the main node tends to deteriorate as the con- 
vection strength increases (see Fig. 4). Therefore, we 
are led to conclude that matrix decomposition of 
Level-2 is most suitable for the five-point formulation 
in view of computational efficiency. 

As was mentioned, the use of iterative solver is 
desirable in handling nonlinear problems, because the 
algebraic equations are based on tentative coefficients. 
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CONCLUSION 

A new BASIS solver was proposed to solve the 
simultaneous linear algebraic equations that fre- 
quently arise from implicit discretization of  field equa- 
tions in thermal and fluid engineering. A systematic 
investigation was carried out to identify which level 
of  matrix decomposit ion was most suitable for the 
five-point formulation of  two-dimensional field equa- 
tions. This was done by regarding the A D I  solver and 
the direct solver as the lower and upper bounds of  
decomposit ion levels. In this respect, three different 
levels of  the L - U  decomposit ion were examined. 
Overall, Level-2 decomposit ion showed good per- 
formance compared with other levels of  decompo- 
sition. Conceptually, the Level-2 BASIS solver is 
indebted to the previously available solution tech- 
niques, being an elegant combination of  ADI ,  MSI,  
SIS and block-correction procedure. When tested for 
two example problems using scalar computers, the 
present BASIS solver showed a performance about  an 
order of  magnitude faster than other iterative solvers. 

In order to evaluate the performance of  each solver at 
an early stage of  iterations (say within 10 iterations), 
the equation residual at each iteration step was printed 
for the case of  Ra = 1 0  6 and N = 40 x 40. Figure 5 
exhibits the early history of  convergence cor- 
responding to each solver. The results corresponding 
to A D I  and SIS are obtained with their optimized 
values of  relaxation parameter (i.e. 09 = 1.28 and 
o9 = 1.62, respectively; see Fig. 4). However,  the 
results of  BASIS correspond to the case ofo9 = 1. For  
SIS and BASIS, the C P U  spent on decomposit ion is 
included in the first i teration number. Table 2 lists the 
C P U  required by ADI,  SIS and BASIS in the L - U  

decomposit ion and in performing a single iteration. 
When the first iteration is finished, Level-3 BASIS 
spends the largest CPU as can be expected, while SIS 
needs the smallest CPU.  However,  SIS provides a 
decreasing rate o f  :residual as slow as ADI.  In fact, the 
decreasing rate of  the residual per iteration would 
serve as a valuable index to determine the performance 
of  an equation solver. In this regard, about  2-3, or a 
few more, iterations with Level-2 BASIS seems to 
be suitable for treating nonlinear problems from the 
standpoint of  numerical efficiency. 

Table 2. The CPU required by ADI, SIS and BASIS in the 
L-U decomposition and in a single iteration for the case of 

N =  40x40 

Solvers Decomposition One iteration 

ADI - -  2.941 
SIS 1.045 1.000 

Level- 1 BASIS 1.219 1.529 
Level-2 BASIS 1.568 1.759 
Level-3 BASIS 4.966 4.129 
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